COMBINATORICA Bolyai Society – Springer-Verlag

ON HEILBRONN'S PROBLEM IN HIGHER DIMENSION

HANNO LEFMANN

Received April 26, 2000

Heilbronn conjectured that given arbitrary n points in the 2-dimensional unit square $[0,1]^2$, there must be three points which form a triangle of area at most $O(1/n^2)$. This conjecture was disproved by a nonconstructive argument of Komlós, Pintz and Szemerédi [10] who showed that for every n there is a configuration of n points in the unit square $[0,1]^2$ where all triangles have area at least $\Omega(\log n/n^2)$. Considering a generalization of this problem to dimensions $d \geq 3$, Barequet [3] showed for every n the existence of n points in the d-dimensional unit cube $[0,1]^d$ such that the minimum volume of every simplex spanned by any (d+1) of these n points is at least $\Omega(1/n^d)$. We improve on this lower bound by a logarithmic factor $\Theta(\log n)$.

1. Introduction

An old conjecture of Heilbronn states that for every distribution of n points in the 2-dimensional unit square $[0,1]^2$ (or unit disc) there are three distinct points which form a triangle of area at most c/n^2 for some constant c>0. Erdős observed that this conjecture, if true, would be best possible, as, for n a prime, the points $(i,i^2 \mod n)_{i=0,\dots,n-1}$ in the $n\times n$ grid would show after rescaling, see [2]. However, Komlós, Pintz and Szemerédi [10] disproved Heilbronn's conjecture by showing for every n the existence of a configuration of n points in $[0,1]^2$ with every three of these n points forming a triangle of area at least $c' \cdot \log n/n^2$ for some constant c' > 0. This existence argument was made constructive in [5], where a deterministic polynomial time algorithm was given, which finds n points in $[0,1]^2$ achieving this lower bound

Mathematics Subject Classification (2000): 68W25, 68R05, 05C69

 $\Omega(\log n/n^2)$ on the minimum triangle area. Upper bounds on Heilbronn's triangle problem were given by Roth in a series [12–16] of papers and by Schmidt [18], see Rothschild and Straus [17] for related results, and the currently best upper bound $O(n^{-8/7+\varepsilon})$ for every fixed $\varepsilon > 0$ is due to Komlós, Pintz and Szemerédi [9].

Recently, Barequet [3] considered a d-dimensional version of Heilbronn's problem. For given (d+1) vectors $p_1, \ldots, p_{d+1} \in \mathbb{R}^d$ the set $\{\sum_{i=1}^{d+1} \lambda_i \cdot \}$ $p_i \mid \sum_{i=1}^{d+1} \lambda_i = 1; \ \lambda_1, \dots, \lambda_{d+1} \geq 0$ is called a *simplex*. For fixed dimension sion $d \geq 3$, Barequet showed for every n, that there exist n points in the d-dimensional unit cube $[0,1]^d$ such that the minimum volume of every simplex spanned by any (d+1) of these n points is at least $\Omega(1/n^d)$. He gave three different approaches towards a solution of the problem. The first one, for dimension d=3, uses a Greedy-type argument, i.e., adding to given points a new point as long as possible, such that no two points are too close, no three points form a triangle of too small area and no four points form a tetrahedron of too small volume (see also [18] for the case d=2). With this he obtained a configuration of n points in the 3-dimensional unit cube $[0,1]^3$ such that the minimum volume of every tetrahedron is at least $\Omega(1/n^4)$. The second approach, which yields a better lower bound, was worked out for every fixed dimension d > 3 and uses a random argument: if 2n points are dropped uniformly at random and independently of each other in the d-dimensional unit cube $[0,1]^d$, then the expected number of simplices with volume at most c_d/n^d is at most n, where $c_d > 0$ is a constant. Deleting one point from every such small simplex yields the existence of n points in $[0,1]^d$ with every simplex formed by (d+1) of these points having volume at least $\Omega(1/n^d)$. The third approach however is similar to Erdős one's (and according to Bollobás [6] was known to him) and is an explicit construction, namely taking the points $P_k = 1/n \cdot (k^j \mod n)_{j=1,\dots,d}$ for $k=0,1,\dots,n-1$ on the moment curve. The volume of every simplex is given by the determinant of a Vandermonde matrix, which is not equal to 0 for n a prime, multiplied by $\Theta(1/n^d)$ and this gives minimum value at least $\Omega(1/n^d)$.

Note, that the corresponding problem in dimension d=1 is trivial as n equidistant points in the unit interval [0,1] show.

Here we will improve Barequet's lower bound for dimensions $d \ge 3$, using a probabilistic existence argument, by a factor $\Theta(\log n)$:

Theorem 1.1. For every fixed integer $d \ge 2$ and for every n there exists a configuration of n points in the unit cube $[0,1]^d$ such that the volume of every simplex spanned by any (d+1) of these points is at least $\Omega(\log n/n^d)$.

2. Simplices with Small Volume and Hypergraphs

In our arguments we will use hypergraphs. The parameters *independence* number of a hypergraph and 2-cycles will be important in our considerations:

Definition 2.1. Let $\mathcal{G} = (V, \mathcal{E})$ be a hypergraph with vertex set V and edge set \mathcal{E} where each edge $E \in \mathcal{E}$ satisfies $E \subseteq V$. A hypergraph $\mathcal{G} = (V, \mathcal{E})$ is k-uniform if every edge $E \in \mathcal{E}$ contains exactly k vertices.

A subset $I \subseteq V$ is called *independent* if I contains no edge $E \in \mathcal{E}$. The largest size of an independent set in \mathcal{G} is called the *independence number* $\alpha(\mathcal{G})$.

In a k-uniform hypergraph $\mathcal{G} = (V, \mathcal{E})$, $k \geq 3$, a 2-cycle is a pair $\{E_1, E_2\}$ of distinct edges $E_1, E_2 \in \mathcal{E}$ with $|E_1 \cap E_2| \geq 2$. A 2-cycle $\{E_1, E_2\}$ in \mathcal{G} is called (2, j)-cycle if $|E_1 \cap E_2| = j$, where j = 2, ..., k - 1.

We will reformulate the geometrical problem considered by Barequet as a problem of finding in an appropriately defined hypergraph a large independent set. For a given set $S \subseteq [0,1]^d$ of points we form a (d+1)-uniform hypergraph with vertex set being this set S of points in $[0,1]^d$. The edges are determined by all subsets of (d+1) points from S, which form a simplex of 'small' volume, to be specified later. An independent set in this hypergraph corresponds to a set of points in $[0,1]^d$, where no simplex has 'small' volume. In order to show the existence of a large independent set, we will use the following result of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], stated here in a variant proven in [7]:

Theorem 2.2 ([1],[7]). Let $k \geq 3$ be a fixed integer. Let $\mathcal{G} = (V, \mathcal{E})$ be a k-uniform hypergraph on |V| = n vertices and with average degree $t^{k-1} = k \cdot |\mathcal{E}|/n$. If \mathcal{G} does not contain any 2-cycles, then the independence number $\alpha(\mathcal{G})$ satisfies for some constant $c_k > 0$:

$$\alpha(\mathcal{G}) \ge c_k \cdot \frac{n}{t} \cdot (\log t)^{\frac{1}{k-1}}$$
.

In recent years, several applications and also an algorithmic version of Theorem 2.2 have been found, compare [4]. Here we will give a another application of this deep result.

In d dimensions the volume of a simplex determined by the points $P_1, \ldots, P_{d+1} \in [0,1]^d$ is given by $\operatorname{vol}(P_1, \ldots, P_{d+1}) := 1/d \cdot G \cdot h$, where G is the volume of the simplex determined by the points P_1, \ldots, P_d (in the corresponding (d-1)-dimensional subspace) and h is the Euclidean distance of the point P_{d+1} from the hyperplane given by P_1, \ldots, P_d . Thus, if h_k denotes the

Euclidean distance of P_k from the hyperplane determined by $P_1, \ldots, P_{k-1}, k=2,\ldots,d+1$, then

$$vol(P_1, ..., P_{d+1}) = \frac{1}{d!} \cdot \prod_{k=2}^{d+1} h_k.$$

In the following we will prove Theorem 1.1.

Proof. In the *d*-dimensional unit cube $[0,1]^d$ we drop $n^{1+\varepsilon}$ points uniformly at random and independently of each other, where ε is a small constant with $0 < \varepsilon < 1/(2d)$. On this random set of points $P_1, \ldots, P_{n^{1+\varepsilon}}$ we form a random (d+1)-uniform hypergraph $\mathcal{G}(\beta) = (V, \mathcal{E})$ with the vertices being the $n^{1+\varepsilon}$ random points in $[0,1]^d$, thus $|V| = n^{1+\varepsilon}$. Every (d+1) vertices $P_{i_1}, \ldots, P_{i_{d+1}}$, of these $n^{1+\varepsilon}$ vertices form an edge in $\mathcal{G}(\beta)$ if the volume $\operatorname{vol}(P_{i_1}, \ldots, P_{i_{d+1}})$ of the corresponding simplex is at most β , i.e., $\{P_{i_1}, \ldots, P_{i_{d+1}}\} \in \mathcal{E}$ if and only if $\operatorname{vol}(P_{i_1}, \ldots, P_{i_{d+1}}) \le \beta$. We will show for the choice $\beta := c \cdot \log n/n^d$, where c > 0 is a suitable constant, that among these $n^{1+\varepsilon}$ vertices there exists an independent set of n vertices. Then, every simplex determined by (d+1) distinct points of these n points has volume at least $\Omega(\log n/n^d)$.

First we estimate the expected number $E(|\mathcal{E}|)$ of edges in the random hypergraph $\mathcal{G}(\beta)$.

Lemma 2.3. For some constant $C_d > 0$, the expected number $E(|\mathcal{E}|)$ of edges in the random hypergraph $\mathcal{G}(\beta) = (V, \mathcal{E})$ satisfies:

(1)
$$E(|\mathcal{E}|) \le C_d \cdot \beta \cdot n^{(1+\varepsilon)(d+1)}.$$

Proof. Our arguments are similar to those in [3]. We give an upper bound on the probability $\operatorname{Prob}(\operatorname{vol}(P_1,\ldots,P_{d+1}) \leq \beta)$ that (d+1) points P_1,\ldots,P_{d+1} dropped in $[0,1]^d$, uniformly at random and independently of each other, form a simplex of volume at most β , i.e., we will show for some constant $C'_d > 0$ and for every $\beta > 0$:

(2)
$$\operatorname{Prob}(\operatorname{vol}(P_1,\ldots,P_{d+1}) \leq \beta) \leq C'_d \cdot \beta.$$

For $k=2,\ldots,d+1$, let x_k denote the Euclidean distance of P_k from the (k-2)-dimensional hyperplane H_{k-1} determined by the points P_1,\ldots,P_{k-1} . Assume that the points $P_1,\ldots,P_{k-1},\ k=2,\ldots,d$, are already fixed. We estimate the probability that the Euclidean distance x_k lies in the infinitesimal range $[g_k,g_k+dg_k]$. Taking the differences of the corresponding volumes of the cylinders determined by all points with Euclidean distance at most (g_k+dg_k) and g_k , respectively, (which are given by the volumes of (d+2-k)-dimensional balls with radii (g_k+dg_k) and g_k , respectively, multiplied by some positive

constant, which depends on d only) from the hyperplane H_{k-1} , we infer for some constant $c_d > 0$:

$$Prob(g_k \le x_k \le g_k + dg_k) \le d(c_d \cdot g_k^{d+2-k}) = c_d \cdot (d+2-k) \cdot g_k^{d+1-k} dg_k.$$

Now, having fixed the points P_1, \ldots, P_d , the point P_{d+1} must fulfill $\operatorname{vol}(P_1, \ldots, P_{d+1}) \leq \beta$, hence the Euclidean distance x_{d+1} of P_{d+1} from the hyperplane determined by P_1, \ldots, P_d must satisfy

$$\frac{1}{d!} \cdot x_{d+1} \cdot \prod_{k=2}^{d} g_k \le \beta .$$

The Euclidean distance between two points in $[0,1]^d$ is at most \sqrt{d} , thus, the point P_{d+1} must lie within a box of base area at most $(\sqrt{d})^{d-1}$ and of height at most

$$2 \cdot d! \cdot \frac{\beta}{\prod_{k=2}^d g_k}$$
,

which happens with probability at most

$$2 \cdot d! \cdot (\sqrt{d})^{d-1} \cdot \frac{\beta}{\prod_{k=2}^d g_k} .$$

The distances $x_2, ..., x_d$ can be arbitrary within the range $[0, \sqrt{d}]$. Collecting constant factors, which only depend on the dimension d to constants $C'_d, C''_d > 0$, we infer

$$\operatorname{Prob}\left(\operatorname{vol}\left(P_{1},\ldots,P_{d+1}\right) \leq \beta\right)$$

$$\leq \int_{0}^{\sqrt{d}} \ldots \int_{0}^{\sqrt{d}} \left(\prod_{k=2}^{d} c_{d} \cdot (d+2-k) \cdot g_{k}^{d+1-k}\right)$$

$$\cdot \frac{2 \cdot d! \cdot (\sqrt{d})^{d-1} \cdot \beta}{\prod_{k=2}^{d} g_{k}} dg_{d} \ldots dg_{2}$$

$$= C''_{d} \cdot \beta \cdot \int_{0}^{\sqrt{d}} \ldots \int_{0}^{\sqrt{d}} \prod_{k=2}^{d} g_{k}^{d-k} dg_{d} \ldots dg_{2}$$

$$= C''_{d} \cdot \beta \cdot \frac{1}{(d-1)!} \cdot d^{\frac{d \cdot (d-1)}{4}}$$

$$= C'_{d} \cdot \beta .$$

There are $\binom{n^{1+\varepsilon}}{d+1}$ possibilities to choose (d+1) out of the $n^{1+\varepsilon}$ random points, hence with (2) for some constant $C_d > 0$ the expected number $E(|\mathcal{E}|)$

of edges in the random hypergraph $\mathcal{G}(\beta) = (V, \mathcal{E})$ satisfies:

$$E(|\mathcal{E}|) \le C'_d \cdot \beta \cdot \binom{n^{1+\varepsilon}}{d+1} \le C_d \cdot \beta \cdot n^{(1+\varepsilon)(d+1)}$$
.

To apply Theorem 2.2, we will show that the expected number of 'bad configurations' among the $n^{1+\varepsilon}$ random points is small, i.e., much less than $n^{1+\varepsilon}$. These bad configurations are pairs of points with small Euclidean distance and 2-cycles in the hypergraph $\mathcal{G}(\beta)$.

First we give an upper bound on the probability that there exist two distinct points P,Q among the $n^{1+\varepsilon}$ random points which have Euclidean distance dist(P,Q) less than some value D>0.

Lemma 2.4. For every real number D > 0 and random points $P_1, \ldots, P_{n^{1+\varepsilon}} \in [0,1]^d$ it is

(3)
$$\operatorname{Prob}(\exists k \neq l : \operatorname{dist}(P_k, P_l) < D) \leq c_d \cdot D^d \cdot n^{2+2\varepsilon}.$$

Proof. For a fixed point P_k , the probability that the point P_l , $l \neq k$, has Euclidean distance less than D from P_k , is given by the volume of the d-dimensional ball with center P_k and radius D, i.e., by $c'_d \cdot D^d$ for some constant $c'_d > 0$. Since there are $\binom{n^{1+\varepsilon}}{2}$ choices for the points P_k and P_l , we have for some constant $c_d > 0$:

$$\operatorname{Prob}(\exists k \neq l : \operatorname{dist}(P_k, P_l) < D)$$

$$\leq \sum_{1 \leq k < l \leq n^{1+\varepsilon}} \operatorname{Prob}(\operatorname{dist}(P_k, P_l) < D)$$

$$\leq \binom{n^{1+\varepsilon}}{2} \cdot c'_d \cdot D^d \leq c_d \cdot D^d \cdot n^{2+2\varepsilon}.$$

With (3) and $D_0 := n^{-2/(d-1)}$, where $0 < \varepsilon < 2/(d-1)$, we obtain that

$$Prob(\exists k \neq l : dist(P_k, P_l) < D_0) = o(1),$$

thus,

(4)
$$\operatorname{Prob}(\forall k \neq l : \operatorname{dist}(P_k, P_l) \geq D_0) = 1 - o(1)$$
,

and with probability close to 1 distinct points have Euclidean distance at least D_0 .

Next, for j = 2, ..., d, we will give an upper bound on the conditional expected numbers

$$E(s_{2,j}(\mathcal{G}(\beta)) \mid \forall k \neq l : \operatorname{dist}(P_k, P_l) \geq D_0)$$

of (2, j)-cycles in $\mathcal{G}(\beta)$, that is, the expected numbers of pairs $\{E_1, E_2\}$ of edges $E_1, E_2 \in \mathcal{E}$ with $|E_1 \cap E_2| = j$, given that distinct points have Euclidean distance at least D_0 .

Lemma 2.5. For j = 2, ..., d-1 and constants $c_j(d) > 0$ the random hypergraph $\mathcal{G}(\beta)$ satisfies:

(5)
$$E(s_{2,j}(\mathcal{G}(\beta)) | \forall k \neq l : \operatorname{dist}(P_k, P_l) \geq D_0) \leq c_j(d) \cdot \beta^2 \cdot n^{(1+\varepsilon)(2d+2-j)}$$
, and for $j = d$ and a constant $c(d) > 0$ it is

(6)
$$E(s_{2,d}(\mathcal{G}(\beta)) \mid \forall k \neq l : \operatorname{dist}(P_k, P_l) \geq D_0) \leq c(d) \cdot \beta^2 \cdot n^{(1+\varepsilon)(d+2)} \cdot \log n$$
.

Proof. Let $j=2,\ldots,d$. Consider (2d+2-j) random points $P_1,\ldots,P_{2d+2-j}\in [0,1]^d$ where the Euclidean distances satisfy $\operatorname{dist}(P_k,P_l)\geq D_0=n^{-2/(d-1)}$ for $1\leq k< l\leq 2d+2-j$. We will give an upper bound on the following conditional probability:

$$\operatorname{Prob}(P_1,\ldots,P_{2d+2-j})$$
 form a $(2,j)$ -cycle in $\mathcal{G}(\beta) \mid \forall k \neq l : \operatorname{dist}(P_k,P_l) \geq D_0$.

Let us assume that the two simplices, which yield a (2,j)-cycle, are $E = \{P_1, \dots, P_{d+1}\} \in \mathcal{E}$ and $E' = \{P_1, \dots, P_j, P_{d+2}, P_{d+3}, \dots, P_{2d+2-j}\} \in \mathcal{E}$ with

$$(7) vol(P_1, \dots, P_{d+1}) \le \beta$$

and

(8)
$$\operatorname{vol}(P_1, \dots, P_j, P_{d+2}, \dots, P_{2d+2-j}) \leq \beta$$
.

All possibilities for forming a (2,j)-cycle will be taken into account by the constant factor $\binom{2d+2-j}{d+1} \cdot \binom{d+1}{j}$. Let $\mathcal{F}_{E,E'}$ denote the event " $\{E,E'\}$ is a (2,j)-cycle in $\mathcal{G}(\beta)$ given that $\forall k \neq l$: dist $(P_k,P_l) \geq D_0$ ". We will estimate the probability $\text{Prob}(\mathcal{F}_{E,E'})$.

For $k=2,\ldots,d+1$, let x_k denote the Euclidean distance of the point P_k from the hyperplane determined by P_1,\ldots,P_{k-1} . For $l=d+2,\ldots,2d+2-j$, let y_l be the Euclidean distance of the point P_l from the hyperplane determined by $P_1,\ldots,P_j,P_{d+2},\ldots,P_{l-1}$, where for l=d+2 the hyperplane is determined by P_1,\ldots,P_j . Assume that the points P_1,\ldots,P_{k-1} , are already fixed. As in the proof of Lemma 2.3 we have for some constant $c'_d>0$:

$$\operatorname{Prob}(g_k \le x_k \le g_k + dg_k) \le d(c_d \cdot g_k^{d+2-k}) \le c'_d \cdot g_k^{d+1-k} dg_k.$$

Also, for $l = d+2, \ldots, 2d+1-j$, given the points $P_1, \ldots, P_j, P_{d+2}, \ldots, P_{l-1}$ we have

$$Prob(h_l \le y_l \le h_l + dh_l) \le d(c_d \cdot h_l^{2d-l-j+3}) \le c'_d \cdot h_l^{2d-l-j+2} dh_l.$$

To satisfy (7), given the points P_1, P_2, \ldots, P_d , the point P_{d+1} must lie in a box of volume at most

$$C'_d \cdot \frac{\beta}{\prod_{k=2}^d g_k}$$
,

where $C'_d>0$ is a constant. Similarly, if the points $P_1, \ldots, P_j, P_{d+2}, \ldots, P_{2d+1-j}$ are already fixed, to satisfy (8), the point P_{2d+2-j} must lie in a box of volume at most

$$C'_d \cdot \frac{\beta}{\prod_{k=2}^{j} g_k \cdot \prod_{l=d+2}^{2d+1-j} h_l}$$
.

We infer for some constant $C_d > 0$:

$$\begin{aligned}
& \text{Prob}(\mathcal{F}_{E,E'}) \\
&= \text{Prob}\left(\{E,E'\} \text{ is a } (2,j)\text{-cycle in } \mathcal{G}(\beta) \mid \forall k \neq l : \text{dist}(P_k,P_l) \geq D_0\right) \\
&\leq C_d \cdot \int_{D_0}^{\sqrt{d}} \cdots \int_{D_0}^{\sqrt{d}} \left(\prod_{k=2}^d g_k^{d+1-k}\right) \cdot \left(\prod_{l=d+2}^{2d+1-j} h_l^{2d-l-j+2}\right) \cdot \frac{\beta^2}{(\prod_{k=2}^d g_k) \cdot (\prod_{k=2}^j g_k) \cdot (\prod_{l=d+2}^{2d+1-j} h_l)} \cdot dh_{2d+1-j} \cdots dh_{d+2} \, dg_d \cdots dg_2 \\
&= C_d \cdot \beta^2 \cdot \int_{D_0}^{\sqrt{d}} \cdots \int_{D_0}^{\sqrt{d}} \left(\prod_{k=2}^j g_k^{d-1-k}\right) \cdot \left(\prod_{k=j+1}^d g_k^{d-k}\right) \cdot \left(\prod_{l=d+2}^d h_l^{2d-l-j+1}\right) \, dh_{2d+1-j} \cdots dh_{d+2} \, dg_d \cdots dg_2 \, .
\end{aligned}$$

For nonnegative exponents the terms g_k^{d-1-k} and $h_l^{2d-l-j+1}$ contribute with respect to the integration at most a constant factor dependent on d only. Only in the case k=j=d the exponent (d-1-k) of $g_k=g_d$ is negative. Hence, for $j=2,\ldots,d-1$, we have for some constant $C_d^*>0$

(9)
$$\operatorname{Prob}(\mathcal{F}_{E,E'}) \le C_d^* \cdot \beta^2,$$

while for j = d, and here we use the assumption $D_0 = n^{-2/(d-1)}$, we obtain for some constants $C'_d, C''_d, C^{**}_d > 0$:

(10)
$$\operatorname{Prob}(\mathcal{F}_{E,E'}) \leq C'_d \cdot \beta^2 \cdot \int_{D_0}^{\sqrt{d}} \frac{1}{g_d} dg_d \leq C''_d \cdot \beta^2 \cdot \log(1/D_0)$$
$$\leq C_d^{**} \cdot \beta^2 \cdot \log n.$$

We can choose (2d+2-j) points from $n^{1+\varepsilon}$ points in $\binom{n^{1+\varepsilon}}{2d+2-j}$ ways. Taking into account the number $\binom{2d-j+2}{d+1} \cdot \binom{d+1}{j}$ of possibilities to form a (2,j)-cycle, we conclude with (9) for $j=2,\ldots,d-1$, that the conditional expected numbers $E(s_{2,j}(\mathcal{G}(\beta)) \mid \forall k \neq l : \operatorname{dist}(P_k,P_l) \geq D_0)$ of (2,j)-cycles in $\mathcal{G}(\beta)$ satisfy for constants $c_j(d),c(d)>0$:

$$E(s_{2,j}(\mathcal{G}(\beta)) \mid \forall k \neq l : \operatorname{dist}(P_k, P_l) \geq D_0)$$

$$\leq \binom{2d-j+2}{d+1} \cdot \binom{d+1}{j} \cdot C_d^* \cdot \beta^2 \cdot \binom{n^{1+\varepsilon}}{2d+2-j}$$

$$\leq c_j(d) \cdot \beta^2 \cdot n^{(1+\varepsilon)(2d+2-j)},$$

and for j = d we have by (10) that

$$E(s_{2,d}(\mathcal{G}(\beta)) \mid \forall k \neq l : \operatorname{dist}(P_k, P_l) \geq D_0)$$

$$\leq \binom{2d - j + 2}{d + 1} \cdot \binom{d + 1}{j} \cdot C_d^{**} \cdot \beta^2 \cdot \log n \cdot \binom{n^{1+\varepsilon}}{d + 2}$$

$$\leq c(d) \cdot \beta^2 \cdot n^{(1+\varepsilon)(d+2)} \cdot \log n.$$

Now we set

$$\beta := \frac{\log n}{n^d} \ .$$

Lemma 2.6. For fixed ε with $0 < \varepsilon < 1/(2d)$, there exists a hypergraph $\mathcal{G}(\beta) = (V, \mathcal{E})$ which satisfies:

$$|V| = n^{1+\varepsilon}$$

$$|\mathcal{E}| \le 2 \cdot C_d \cdot \beta \cdot n^{(1+\varepsilon)(d+1)}$$

$$s_{2,j}(\mathcal{G}(\beta)) \le n \quad \text{for } j = 2, \dots, d.$$

Proof. We will show that the event $\mathcal{F} = (|\mathcal{E}| \leq 2 \cdot C_d \cdot \beta \cdot n^{(1+\varepsilon)(d+1)})$ and $(\forall k \neq l : \text{dist}(P_k, P_l) \geq D_0)$ and $(\forall j : s_{2,j}(\mathcal{G}(\beta)) \leq n)$ " happens with positive probability for our random hypergraph $\mathcal{G}(\beta) = (V, \mathcal{E})$.

The complementary event of \mathcal{F} is $\overline{\mathcal{F}} = \text{``}(|\mathcal{E}| > 2 \cdot C_d \cdot \beta \cdot n^{(1+\varepsilon)(d+1)})$ or $(\exists k \neq l : \text{dist}(P_k, P_l) < D_0)$ or $(\exists j : [s_{2,j}(\mathcal{G}(\beta)) > n \text{ and } \forall k \neq l : \text{dist}(P_k, P_l) \geq D_0])$ ".

Using (1), (4) and Markov's inequality, i.e., $\operatorname{Prob}(X \geq \alpha) \leq E(X)/\alpha$ for every real $\alpha > 0$ and every nonnegative random variable X, we infer

$$\operatorname{Prob}(\overline{\mathcal{F}}) \leq \operatorname{Prob}(|\mathcal{E}| > 2 \cdot C_d \cdot \beta \cdot n^{(1+\varepsilon)(d+1)}) + \operatorname{Prob}(\exists k \neq l : \operatorname{dist}(P_k, P_l) < D_0) +$$

$$+\operatorname{Prob}\left(\exists j: [s_{2,j}(\mathcal{G}(\beta)) > n \text{ and } \forall k \neq l: \operatorname{dist}(P_k, P_l) \geq D_0]\right)$$

$$\leq \frac{1}{2} + o(1) + \sum_{j=2}^{d} \operatorname{Prob}\left(s_{2,j}(\mathcal{G}(\beta)) > n \text{ and } \forall k \neq l: \operatorname{dist}(P_k, P_l) \geq D_0\right)$$

$$= \frac{1}{2} + o(1) + \sum_{j=2}^{d} \operatorname{Prob}\left(\forall k \neq l: \operatorname{dist}(P_k, P_l) \geq D_0\right) \cdot \cdot \cdot \operatorname{Prob}\left(s_{2,j}(\mathcal{G}(\beta)) > n \mid \forall k \neq l: \operatorname{dist}(P_k, P_l) \geq D_0\right)$$

$$= \frac{1}{2} + o(1) + (1 - o(1)) \cdot \cdot \cdot \cdot \sum_{j=2}^{d} \operatorname{Prob}\left(s_{2,j}(\mathcal{G}(\beta)) > n \mid \forall k \neq l: \operatorname{dist}(P_k, P_l) \geq D_0\right)$$

$$(12) \leq \frac{1}{2} + o(1) + (1 - o(1)) \cdot \cdot \cdot \sum_{j=2}^{d} \frac{E(s_{2,j}(\mathcal{G}(\beta))) \mid \forall k \neq l: \operatorname{dist}(P_k, P_l) \geq D_0}{n}.$$

For $j=2,\ldots,d-1$ we have by (5) and (11) for $\varepsilon < 1/(2d)$:

$$\frac{E(s_{2,j}(\mathcal{G}(\beta)) \mid \forall k \neq l : \operatorname{dist}(P_k, P_l) \geq D_0)}{n}$$

$$\leq \frac{c_j(d) \cdot \beta^2 \cdot n^{(1+\varepsilon)(2d+2-j)}}{n}$$

$$= c_j(d) \cdot (\log n)^2 \cdot n^{1-j+\varepsilon(2d+2-j)}$$

$$= o(1).$$

and for j=d and $\varepsilon < (d-1)/(d+2)$ we have by (6) and (11):

$$\frac{E(s_{2,j}(\mathcal{G}(\beta)) \mid \forall k \neq l : \operatorname{dist}(P_k, P_l) \geq D_0)}{n}$$

$$\leq \frac{c(d) \cdot \beta^2 \cdot n^{(1+\varepsilon)(d+2)} \cdot \log n}{n}$$

$$= c(d) \cdot (\log n)^3 \cdot n^{-d+1+\varepsilon(d+2)}$$

$$= o(1) .$$

We conclude with (12) that $\operatorname{Prob}(\overline{\mathcal{F}}) \leq 1/2 + o(1)$ and hence $\operatorname{Prob}(\mathcal{F}) > 0$ for $0 < \varepsilon < 1/(2d)$. Thus there exists a desired hypergraph $\mathcal{G}(\beta) = (V, \mathcal{E})$.

We take the (d+1)-uniform hypergraph $\mathcal{G}(\beta)$ with $0 < \varepsilon < 1/(2d)$, which exists by Lemma 2.6, and we remove one vertex from each (2,j)-cycle, $j = 2,3,\ldots,d$. We obtain an induced subhypergraph $\mathcal{G}_1(\beta) = (V_1,\mathcal{E}_1)$ of $\mathcal{G}(\beta) = (V,\mathcal{E})$ with $|V_1| = (1-o(1)) \cdot n^{1+\varepsilon}$ vertices and $|\mathcal{E}_1| \leq 2 \cdot C_d \cdot \beta \cdot n^{(1+\varepsilon)(d+1)}$

and without any 2-cycles. Hence, $\mathcal{G}_1(\beta)$ has average degree at most $t^d = 2 \cdot C_d \cdot (1+o(1)) \cdot (d+1) \cdot \beta \cdot n^{(1+\varepsilon)d}$. Set $c_d^{**} := (2 \cdot C_d \cdot (1+o(1)) \cdot (d+1))^{1/d}$.

We apply Theorem 2.2 to the (d+1)-uniform subhypergraph $\mathcal{G}_1(\beta) = (V_1, \mathcal{E}_1)$ and by the choice of β in (11) the independence number $\alpha(\mathcal{G}_1(\beta))$ satisfies for suitable constants $c'_d, c^*_d > 0$:

$$\alpha(\mathcal{G}(\beta)) \ge \alpha(\mathcal{G}_1(\beta)) \ge c_{d+1} \cdot \frac{(1 - o(1)) \cdot n^{1+\varepsilon}}{c_d^{**} \cdot \beta^{1/d} \cdot n^{1+\varepsilon}} \cdot \left(\log(c_d^{**} \cdot \beta^{1/d} \cdot n^{1+\varepsilon})\right)^{1/d}$$

$$\ge c_d' \cdot \frac{n}{(\log n)^{1/d}} \cdot (\log n^{\varepsilon})^{1/d}$$

$$\ge c_d^* \cdot \frac{n}{(\log n)^{1/d}} \cdot (\log n)^{1/d}$$

$$\ge c_d^* \cdot n.$$

Thus, among the $n^{1+\varepsilon}$ points in $[0,1]^d$ there is a subset of $c_d^* \cdot n$ points, such that each simplex spanned by any (d+1) of these $c_d^* \cdot n$ points has volume at least $\beta = \log n/n^d$. By adapting constant factors, i.e., choosing $\beta = c \cdot \log n/n^d$ for a suitable constant c > 0, there exist n points in $[0,1]^d$ such that the volume of every simplex spanned by any (d+1) of these n points is at least $\Omega(\log n/n^d)$. This finishes the proof of Theorem 1.1.

3. Concluding Remarks

We showed by a probabilistic argument the existence of a configuration of n points in the d-dimensional unit cube $[0,1]^d$ such that the volume of every simplex formed by any (d+1) of these points is at least $\Omega(\log n/n^d)$. Although there is an algorithmic version of Theorem 2.2 available, see [8] and [4], it seems to be difficult and involved, to turn our arguments into a deterministic polynomial time algorithm. For the 2-dimensional case we succeeded in doing so by using a sufficiently fine grid [5], and very recently also for the case d=3, see [11]. Moreover, it would also be interesting to investigate upper bounds for the d-dimensional version of Heilbronn's problem.

References

- M. AJTAI, J. KOMLÓS, J. PINTZ, J. SPENCER and E. SZEMERÉDI: Extremal Uncrowded Hypergraphs, Journal of Combinatorial Theory, Ser. A 32 1982, 321–335.
- [2] N. Alon and J. Spencer: The Probabilistic Method, Wiley & Sons, 1992.
- [3] G. Barequet: A Lower Bound for Heilbronn's Triangle Problem in d Dimensions, SIAM Journal on Discrete Mathematics 14 2001, 230–236.

- [4] C. Bertram-Kretzberg and H. Lefmann: The Algorithmic Aspects of Uncrowded Hypergraphs, SIAM Journal on Computing 29 1999, 201–230.
- [5] C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann: An Algorithm for Heilbronn's Problem, SIAM Journal on Computing 30 2000, 383–390.
- [6] B. Bollobás: personal communication, 2001.
- [7] R. A. DUKE, H. LEFMANN and V. RÖDL: On Uncrowded Hypergraphs, Random Structures & Algorithms 6 1995, 209–212.
- [8] A. FUNDIA: Derandomizing Chebychev's Inequality to find Independent Sets in Uncrowded Hypergraphs, Random Structures & Algorithms 8 1996, 131–147.
- [9] J. KOMLÓS, J. PINTZ and E. SZEMERÉDI: On Heilbronn's Triangle Problem, Journal of the London Mathematical Society 24 1981, 385–396.
- [10] J. Komlós, J. Pintz and E. Szemerédi: A Lower Bound for Heilbronn's Problem, Journal of the London Mathematical Society 25 1982, 13–24.
- [11] H. LEFMANN and N. SCHMITT: A Deterministic Algorithm for Heilbronn's Problem in Dimension Three (Extended Abstract), Proceedings '5th Latin American Theoretical Informatics LATIN'02', Springer, LNCS 2286, ed. S. Rajsbaum, 2002, 165–180.
- [12] K. F. ROTH: On a Problem of Heilbronn, Journal of the London Mathematical Society 26 1951, 198–204.
- [13] K. F. ROTH: On a Problem of Heilbronn, II, Proc. of the London Mathematical Society (3) 25 1972, 193–212.
- [14] K. F. ROTH: On a Problem of Heilbronn, III, Proc. of the London Mathematical Society (3) 25 1972, 543-549.
- [15] K. F. ROTH: Estimation of the Area of the Smallest Triangle Obtained by Selecting Three out of n Points in a Disc of Unit Area, AMS, Providence, Proc. of Symposia in Pure Mathematics 24 1973, 251–262.
- [16] K. F. ROTH: Developments in Heilbronn's Triangle Problem, Advances in Mathematics 22 1976, 364–385.
- [17] B. L. ROTHSCHILD and E. G. STRAUS: On Triangulations of the Convex Hull of n Points, Combinatorica 5 1985, 167–179.
- [18] W. M. SCHMIDT: On a Problem of Heilbronn, Journal of the London Mathematical Society (2) 4 1972, 545–550.

Hanno Lefmann

Fakultät für Informatik
TU-Chemnitz
Straße der Nationen 62
D-09107 Chemnitz
Germany

lefmann@informatik.tu-chemnitz.de